
Customer: StreamPay
Date: 31 May, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for StreamPay

Approved By Marcin Ugarenko | Lead Solidity SC Auditor at Hacken OU

Type ERC777 token; Staking;

Platform EVM

Language Solidity

Methodology Link

Website https://www.streamablefinance.com/

Changelog
16.05.2023 – Initial Review
29.05.2023 - Second review
31.05.2023 - Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://www.streamablefinance.com/


Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 6
Checked Items 7
Findings 10

Critical 10
C01. Invalid Comparison 10

High 10
H01. Missing Validation 10
H02. Data Inconsistency 11

Medium 11
M01. Inefficient Gas Model 11
M02. Undocumented Functionality 12
M03. Undocumented Functionality 12

Low 13
L01. Missing Zero Address Validation 13
L02. Check-Effects-Interaction Violation 13
L03. Variable Shadowing 14
L04. Missing Events 14
L05. Possible Denial Of Service 14

Informational 15
I01. Redundant Contract & Function 15
I02. Floating Pragma 15
I03. Explicit Size Of The Uint 16

Disclaimers 17
Appendix 1. Severity Definitions 18

Risk Levels 18
Impact Levels 19
Likelihood Levels 19
Informational 19

Appendix 2. Scope 20

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by StreamPay (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

The audit scope consists of a staking and reward distribution system. Users
can deposit ERC20 LP tokens to various LP pools determined by the owner of
the system. In return, they can acquire StreamableFinanceToken, which is an
ERC777 standard token. The rewards are not directly sent to the user but
are locked with a timelock. If the users wish to withdraw rewards before
the timelock expires, they can do it with a penalty of 50%.

StreamPay is a staking protocol with the following contracts:
● TokenStaker — a contract that allows users to stake their tokens in

pools to earn rewards. The rewards are distributed in STRF tokens,
which are locked in a separate contract until the staking period is
over. The contract also includes a schedule of future reward rates
that depend on the elapsed time since the start of staking, as well
as a mechanism for distributing the last stage of rewards at the end
of the staking period.

● STRFTokenLocker — an STRF token locking contract that is used by the
TokenStaker. Implementation includes timelock mechanism that handles
reward distribution and penalties. TokenStaker contract is the
LOCKER_ROLE of the STRFTokenLocker contract.

● ERC777Capped — an ERC-777 contract that is customly modified to cap
the total supply. Initially no token is minted. Additional minting is
allowed.
It has the following attributes:

○ Name: given as a constructor parameter
○ Symbol: given as a constructor parameter
○ Decimals: 18
○ Total supply: given as a constructor parameter

Privileged roles
● The owner of the TokenStaker contract can:

○ set STRF Locker
○ add pools
○ set allocation points of pools

● The LOCKER_ROLE of the STRFTokenLocker contract can:
○ call the lock function

● The MINTER_ROLE of the ERC777Capped contract can:
○ mint tokens

www.hacken.io
4



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 8 out of 10.

● Functional requirements and technical description were provided.
● NatSpec format was not followed.
● The development environment instructions were provided.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment was configured.
● The code is well-designed and follows best practices.

Test coverage
Code coverage of the project is 91.67% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Negative cases coverage is present.
● Interactions by several users are tested.

Security score
As a result of the audit, the code contains 1 low severity issue. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.5. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

16 May 2023 5 3 2 1

29 May 2023 1 0 0 0

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


31 May 2023 1 0 0 0

Risks

● All privileged roles can affect the system; there is no documentation
regarding how those roles will be protected or if multi-sig wallets
will be used.

www.hacken.io
6



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Passed

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Passed

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
7



Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Passed

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
8

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used.

Not
Relevant

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Passed

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
9



Findings

Critical

C01. Invalid Comparison

Impact High

Likelihood High

The stakingStarted modifier should check if the stake information is
provided and the stake system has been started for the given pool. In
the code, it is implemented incorrectly.

The default value of the poolInfo[pid].startTime is always zero, and
when the pool has not been added and started yet, its value will be
zero. Therefore, comparing it with block.timestamp is meaningless
since the current time is always greater than zero.

It will allow users to execute pool transactions even though it has
not yet been started.

Path: ./contracts/lp-token-staker/TokenStaker.sol : stakingStarted()

Recommendation: Add the require statement condition as below to the
stakingStarted modifier.

_poolInfo[pid].startTime != 0

Found in: 999fc5e1034231fa1ad3362bf8d6c44da8b36088

Status: Fixed (Revised commit: 168e72f)

High

H01. Missing Validation

Impact High

Likelihood Medium

When adding a new pool, adding two pools of the same token can
disrupt the logic of the contracts. This is stated as a warning in
the addPool() function comment, but no prevention check is made.

This may result in unexpected behavior, as the total balance of the
same token will be used as a divisor for multiple pool's reward
calculations, resulting in lower rewards than expected.

Path: ./contracts/lp-token-staker/TokenStaker.sol : addPool()

Recommendation: Add a check to see if a token has already been added
to a pool. This can be done by introducing a new mapping that tracks

www.hacken.io
10



boolean values indicating whether tokens have been added to the pools
or not.

Found in: 999fc5e1034231fa1ad3362bf8d6c44da8b36088

Status: Fixed (Revised commit: 168e72f)

H02. Data Inconsistency

Impact High

Likelihood Medium

In the setAllocPoint() function, the allocation points are updated
without updating the associated pool information simultaneously
through the _updatePool() function.

Consequently, until the _updatePool() function is manually triggered
by other functions, a period of time will elapse. During this time,
the rewards generated will be calculated based on the new allocation
points.

As a result of the allocation points being updated without updating
the pool, the rewards between the "last reward time" and the "current
time" are being manipulated.

This can lead to potential increases or decreases in reward amounts.

Path: ./contracts/lp-token-staker/TokenStaker.sol : setAllocPoints()

Recommendation: Update the pool right before changing the allocation
points in the setAllocPoint() function.

Found in: 999fc5e1034231fa1ad3362bf8d6c44da8b36088

Status: Fixed (Revised commit: 168e72f)

Medium

M01. Inefficient Gas Model

Impact High

Likelihood Medium

All token locks of a user are stored in an array and never removed,
even after release.

The withdraw() and withdrawExpiredLocks() functions iterate over all
the array elements. If the _userLocks[user] reaches a size big
enough, transactions can revert due to exceeding Gas.

This leads to a situation where the Gas cost for calling the
functions will constantly increase with each new lock.

www.hacken.io
11



Path: ./contracts/lp-token-staker/STRFTokenLocker.sol : withdraw(),
withdrawExpiredLocks()

Recommendation: Consider removing the released lock elements from the
locks array, or introducing an index mechanism that points to the
last released lock element.

Found in: 999fc5e1034231fa1ad3362bf8d6c44da8b36088

Status: Fixed (Revised commit: 168e72f)

M02. Undocumented Functionality

Impact Low

Likelihood High

The reason for manually updating the pool with a given time offset is
not clear, as there is already a way to update it to the most current
one.

The time offset functionality has no significant meaning in the
implementation, so it is best to always set it to zero as a parameter
in order to update the rewards to the latest block timestamp.

Path: ./contracts/lp-token-staker/TokenStaker.sol: manualUpdate()

Recommendation: Explain the logic behind this implementation or
remove this redundant functionality.

Found in: 999fc5e1034231fa1ad3362bf8d6c44da8b36088

Status: Fixed (Revised commit: 168e72f) (Customer stated that this
function is used in case of a pool is not updated for a long time and
trying to update with default offset would cause DOS. This way, the
pool can be updated to its current state in a few transactions by
using different offsets.)

M03. Undocumented Functionality

Impact Medium

Likelihood Medium

Calculations in the _getPoolChanges() function to update the pool
info variables were not documented.

Complex function logic should be documented to ensure that the system
runs as intended.

Path: ./contracts/lp-token-staker/TokenStaker.sol : _getPoolChanges()

www.hacken.io
12



Recommendation: Document all the important calculations.

Found in: 999fc5e1034231fa1ad3362bf8d6c44da8b36088

Status: Fixed (Revised commit: 168e72f)

Low

L01. Missing Zero Address Validation

Impact Low

Likelihood Medium

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0 or can lead to saving
information in mappings as 0x0.

Path: ./contracts/lp-token-staker/STRFTokenLocker.sol: constructor(),
setTreasury(), lock()

Recommendation: Implement zero address checks.

Found in: 999fc5e1034231fa1ad3362bf8d6c44da8b36088

Status: Reported (setTreasury() and lock() functions have zero
address validations implemented; however, the constructor is lacking
zero address validation.)

L02. Check-Effects-Interaction Violation

Impact Medium

Likelihood Low

In the STRFTokenLocker.sol contracts withdraw() function, there is an
external call made before modifying state variables.

The _STRFToken.safeTransfer() call made in the if (!penaltyFlag) if
statement violates the Check-Effects_Interaction pattern and is
against best practices.

This may result in reentrancy vulnerabilities and unexpected
behavior.

Path: ./contracts/lp-token-staker/STRFTokenLocker.sol : withdraw()

www.hacken.io
13

https://swcregistry.io/docs/SWC-107


Recommendation: Follow the Check-Effects_Interaction pattern by
moving the penalty functionality logic after doing state changes, or
use ReentrancyGuard.

Found in: 999fc5e1034231fa1ad3362bf8d6c44da8b36088

Status: Fixed (Revised commit: 168e72f)

L03. Variable Shadowing

Impact Low

Likelihood Low

There is state variable shadowing in the constructor of the
StreamableFinanceToken, all parameters name, symbol,
defaultOperators, cap are shadowing the getter functions name(),
symbol(), defaultOperators(), cap() from the child contracts.

Path: ./contracts/token/StreamableFinanceToken.sol : constructor()

Recommendation: Rename related parameter names.

Found in: 999fc5e1034231fa1ad3362bf8d6c44da8b36088

Status: Fixed (Revised commit: 168e72f)

L04. Missing Events

Impact Low

Likelihood Low

The STRFTokenLocker contracts constructor is missing the SetTreasury
event.

Events for critical state changes should be emitted for tracking
things off-chain.

Path: ./contracts/lp-token-staker/STRFTokenLocker.sol : constructor

Recommendation: Emit related events.

Found in: 999fc5e1034231fa1ad3362bf8d6c44da8b36088

Status: Fixed (Revised commit: 168e72f)

L05. Possible Denial Of Service

Impact Medium

Likelihood Low

www.hacken.io
14

https://swcregistry.io/docs/SWC-107
https://docs.openzeppelin.com/contracts/4.x/api/security#ReentrancyGuard


In the setSTRFLocker() function, there is a potential vulnerability
where the address zero can be set for the _STRFLocker variable.

This can result in a temporary Denial of Service (DoS) for users when
they attempt to deposit or withdraw funds from the pool.

If a user already made a deposit and the _STRFLocker variable got set
to address zero accidentally, the user will not be able to execute
the withdraw function to get the deposited assets.

This may lead to temporarily locking the funds in the contract.

Path: ./contracts/token/TokenStaker.sol : setSTRFLocker()

Recommendation: Implement zero check for the setSTRFLocker function.

Found in: 999fc5e1034231fa1ad3362bf8d6c44da8b36088

Status: Fixed (Revised commit: 168e72f)

Informational

I01. Redundant Contract & Function

The contract Time has only one function and it returns the
block.timestamp. Block variables can be called directly.

Redundant declarations cause unnecessary Gas consumption and reduce
the code readability.

Path: ./contracts/utils/Time.sol

Recommendation: Remove the contract from the project and bring block
variables directly without using an intermediary contract.

Found in: 999fc5e1034231fa1ad3362bf8d6c44da8b36088

Status: Mitigated (Removing Time.sol causes many of the tests to
fail.)

I02. Floating Pragma

The project uses floating pragma ^0.8.9.

This may result in the contracts being deployed using the wrong
pragma version, which is different from the one they were tested
with. For example, they might be deployed using an outdated pragma
version which may include bugs that affect the system negatively.

Path: ./contracts/token/extensions/ERC777Capped.sol

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment. Consider
known bugs (https://github.com/ethereum/solidity/releases) for the
compiler version that is chosen.

www.hacken.io
15

https://github.com/ethereum/solidity/releases


Found in: 999fc5e1034231fa1ad3362bf8d6c44da8b36088

Status: Fixed (Revised commit: 168e72f)

I03. Explicit Size Of The Uint

In the for loops in the STRFTokenLockers contracts’ the uint is used
without explicit size.

It is best practice to explicitly state the size of the uint, for
example, uint256.

Path: ./contracts/lp-token-staker/STRFTokenLocker.sol

Recommendation: Consider using uint with explicit size.

Found in: 999fc5e1034231fa1ad3362bf8d6c44da8b36088

Status: Fixed (Revised commit: 168e72f)

www.hacken.io
16



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
17



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
18



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
19



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/streamable-finance/streampay-staking

Commit 999fc5e1034231fa1ad3362bf8d6c44da8b36088

Whitepaper -

Requirements -

Technical
Requirements -

Contracts File: contracts/lp-token-staker/STRFTokenLocker.sol
SHA3: c1173b9061e744c3ac8e7f569f22156468f77e81a542dd8963bdf1359e6488dc

File: contracts/lp-token-staker/TokenStaker.sol
SHA3: 2c7814653fd52bd22fcebc73d8b8b203ae88ed8de8b4df15a7af413bb24221dc

File: contracts/token/StreamableFinanceToken.sol
SHA3: a653c6389096fee9b055061cfd11e80b81ad5fde17bbef7bd491c25d6f0fe685

File: contracts/token/extensions/ERC777Capped.sol
SHA3: ab1279c4f5369eafd50c3948c07a94d166962ecd281b5086db6eadbcfac18485

File: contracts/utils/Time.sol
SHA3: a89ec8540dad9ceb058c4122fc4bfbdde8b1a8631c664565c56464e09bf925a7

Second review scope

Repository https://github.com/streamable-finance/streampay-staking

Commit 168e72fb24689b92e18cd077c8f4943c911b12f5

Whitepaper -

Requirements
LP staking security audit docs
SHA3 :
5ef6211d2dcede9b494c2eb47d588109869ed2196f264e2e203e3a0b191e4ed0

Technical
Requirements

LP staking security audit docs
SHA3 :
5ef6211d2dcede9b494c2eb47d588109869ed2196f264e2e203e3a0b191e4ed0

Contracts File: contracts/lp-token-staker/STRFTokenLocker.sol
SHA3: 1b7e390df14ac17b8f9e2ec76e5a900c587f24c294fac518cf57d649093eefff

File: contracts/lp-token-staker/TokenStaker.sol
SHA3: 6c56ff7af75daf93a798cea31bbe4b0fd44ce6b97f9edd9b0d95dcfd525fa83c

File: contracts/token/StreamableFinanceToken.sol
SHA3: 4c880e77c80eeabf2d7521ffa2d42c8b9081ea29172853dacb39d9f98dc6337e

www.hacken.io
20



File: contracts/token/extensions/ERC777Capped.sol
SHA3: 76b892abe7840989680ab129a2f197dc6ccb4ae35657be5ded1302e85cdc5112

Third review scope

Repository https://github.com/streamable-finance/streampay-staking

Commit c5b6f12ede90352047a87d960b0318e0a94d714a

Whitepaper -

Requirements
LP staking security audit docs
SHA3 :
5ef6211d2dcede9b494c2eb47d588109869ed2196f264e2e203e3a0b191e4ed0

Technical
Requirements

LP staking security audit docs
SHA3 :
5ef6211d2dcede9b494c2eb47d588109869ed2196f264e2e203e3a0b191e4ed0

Contracts File: contracts/lp-token-staker/STRFTokenLocker.sol
SHA3: 53c64d65e25ae021a73e9fbf64756d255e239d292034faa4f9bd7de9ec8a2ff2

File: contracts/lp-token-staker/TokenStaker.sol
SHA3: 75fea3b33acc1e3653471fae1229f919d8cdceee28bd7e1296e349a35f84ae89

File: contracts/token/StreamableFinanceToken.sol
SHA3: 4c880e77c80eeabf2d7521ffa2d42c8b9081ea29172853dacb39d9f98dc6337e

File: contracts/token/extensions/ERC777Capped.sol
SHA3: 76b892abe7840989680ab129a2f197dc6ccb4ae35657be5ded1302e85cdc5112

www.hacken.io
21


